Code No.: 16533 TS

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (Mech. Engg.) VI-Semester Main & Backlog Examinations, June-2022 SDC-IV: Technical Skills (Mechanical Vibrations)

Time: 2 hours

Max. Marks: 40

Note: Answer all questions from Part-A and any THREE from Part-B

Part-A $(5 \times 2 = 10 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	What do you mean by logarithmic decrement factor and explainit'sphysical significance?	2	2	1	1
2.	What are principal coordinates and state their use.	2	1	2	1
3.	Identify the role of eigen values and eigen vectors in the study of mechanical vibrations.	2	1	3	1
4.	How many natural frequencies does a continuous system have and how does it differ from a discrete system in the nature of it's equation of motion.	2	1	4	1
5.	Listany twofrequency measuring Instruments and describe in brief the principle behind it.	2	1	5	1
	$Part-B (3 \times 10 = 30 Marks)$				
6. a)	List the various methods to obtain natural frequency of free vibration of a single degree of freedom spring-mass-system and discuss any one method in brief.	4	2	1	1
b)	A vibrating system consists of a mass of 50 kg, a spring with a stiffness of 30 kN/m and a damper. The damping provided is only 20% of the critical value. Determine the	6	3	1	2,
	i) damping factor				
	ii) critical damping coefficient				
	iii) natural frequency of damped vibrations				
	iv) logarithmic decrement				
	v) ratio of two consecutive amplitudes.				
7. a)	Discuss about the static and dynamic coupling.	4	2	2	1
b)	Calculate the natural frequencies for the two-degree-of-freedom torsional system as shown in the figure below.	6	4	2	2
	Where J_1 , J_2 represents the mass moments of inertia of the discs,				
	k _{t1} , k _{t2} are the rotational spring constants				
	Consider $\mathbf{k}_{t2} = 2\mathbf{k}_{t1}$ and $\mathbf{J}_2 = 2\mathbf{J}_1$				
21	k_{t2}				

- 8. a) Discuss the procedure involved in diagonalization of mass and stiffness matrices.
- 4 2 3 1
- b) The stiffness and mass matrices obtained by writing the governing equations of motion for three-mass linear system as shown in the figure below is given by
- 6 3 3 2

$$[m] = \begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix}, \quad [k] = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix},$$

Compute the eigen values of the above system, considering

$$\mathbf{k}_1 = \mathbf{k}_2 = \mathbf{k}_3 = \mathbf{k}$$
 and $\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_3 = \mathbf{m}$

- 9. a) Write the boundary conditions of the beam for the following given end conditions of the beam.
- 1 4

- i) Free end
- ii) Simply supported (pinned) end
- iii) Fixed (clamped) end
- Calculate the natural frequencies and also obtain the free-vibration solution of a string of length L and of uniform mass ρ per unit length, fixed at both ends as shown in the figure below, having transverse vibrations.
- 6 4 4 2

- 10. a) Discuss the importance of vibration measurement and name the instrument used for measuring displacement, velocity and acceleration in a vibrating system.
- 4 2 5 1
- b) List the various Vibration Exciters and explain in brief about anyone Vibration Exciter.
- 6 3 5 1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	30%
iii)	Blooms Taxonomy Level – 3 & 4	50%
